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Ecologists have used integral projection models (IPMs) to study fish and other animals

which continue to grow throughout their lives. Such animals cannot shrink, since

they have bony skeletons; a mathematical consequence of this is that the kernel of

the integral projection operator T is unbounded, and the operator is not compact.

A priori, it is unclear whether these IPMs have an asymptotic growth rate λ, or a

stable-stage distribution ψ. In the case of a compact operator, these quantities are

its spectral radius and the associated eigenvector, respectively. Under biologically

reasonable assumptions, we prove that the non-compact operators in these IPMs

share important spectral properties with their compact counterparts. Specifically, we

show that the operator T has a unique positive eigenvector ψ corresponding to its

spectral radius λ, the spectral radius λ is strictly greater than the supremum of all

other spectral values, and for any nonnegative initial population ϕ0, there is a c > 0

such that T nϕ0/λ
n → c · ψ. We also show that the zeros of certain functions defined

by sums of compact operators can be used to approximate the spectral radius λ of

the non-compact operator T . In the final chapter, we give some simulations showing

the long-term behavior of a density-dependent IPM.
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Chapter 1

An Integral Projection Model For Indeterminate Growth

1.1 Integral Projection Models in Ecology

In this thesis, we study operators which arise in integral projection models (or IPMs)

describing animal populations in which the individuals exhibit indeterminate growth;

that is, when individuals continue to grow throughout their lives. The operators in

IPMs are not projections in the mathematical sense of the word; the term projec-

tion comes from the fact that these models “project” a current population size and

structure into the future. We will exclusively use the term IPM hereafter to avoid

confusion.

IPMs are discrete-time, stage-structured models introduced in [18] and [22]; they

generalize Leslie matrices (see [9]) by allowing for the structure variable to take on

values in a continuum. Hence, IPMs are appropriate when vital rates depend on a

continuous variable, such as the length or biomass of an individual. The paper [5] is

a gentle introduction to constructing IPMs, whereas [21] is a more detailed overview.

The IPMs we consider in this thesis are given by a linear integral operator T :

L1 → L1 where

ϕt+1(y) = (Tϕt)(y) :=

∫ U

L

k(y, x)ϕt(x) dx.
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Here, ϕt(x) is the population density in stage x at time t, the nonnegative kernel

function k(y, x) describes how the distribution of individuals in stage x contributes

to the individuals in stage y in the next time step, and L and U are the lower-

and upper-limits of the structure variable, respectively. We assume that the kernel

function k(y, x) can be decomposed as

k(y, x) = s(x)g(y, x) + b(y)f(x),

where s(x) is the survival probability of an individual in stage x, g(y, x) gives the

probability that a stage x individual grows to a stage y individual in one time step, b(y)

is the size distribution of newborns, and f(x) gives the expected number of offspring

that an average individual in stage x will produce in one time step. In practice, these

functions are usually determined by fitting appropriate curves to population data,

and we will give further assumptions in Section 1.3.

IPMs have found wide use in the biological sciences [21], and the the primary

theoretical result, proved in [22] is the following:

Theorem 1.1.1. Suppose that T : L1 → L1 is the integral operator for an IPM with

kernel k(y, x). If k(y, x) is positive and continuous on the square [L,U ]2, then the

spectral radius λ = r(T ) is an eigenvalue of T with eigenvector ψ. Additionally, ψ is

the only eigenvector of T which can be scaled to be nonnegative, and for any initial

nonnegative population ϕ0, one has

lim
k→∞

T kϕ0

λk
= Cψ,

where C > 0.

In biological terms, the spectral radius of the operator T represents the asymp-
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totic growth rate of the population, which we will denote by λ, and the associated

eigenvector ψ is the stable stage distribution of the population. The eigenvector ψ

is important in conservation biology, because by comparing the stable stage distribu-

tion with a population distribution in the field, a biologist can determine if the field

population has reached the steady state.

In the case that the kernel function k(y, x) is bounded, T is a compact operator on

the relevant function space [22]. Compact operators can be uniformly approximated

by matrices, which is one reason why an IPM with a compact operator is easier to

work with. When an IPM operator is compact, ecologists can estimate the asymptotic

growth rate of a population by approximating the infinite-dimensional operator with

large matrices. The leading eigenvalues of these large matrices can thus give a good

approximation of the asymptotic growth rate of the population, when modeled by an

IPM.

The appropriate choice for the structure variable depends on the ecology of the

species being modeled, or what data ecologists can collect. Some common examples of

structure variables in IPMs are animal biomass, stem diameter of plants, the propor-

tion of tissue infected by a disease, and the length or height of individuals. However,

this choice has mathematical consequences: if individuals can decrease in size from

one time step to the next, the IPM operator T will be compact; if individuals cannot

decrease in size, we prove in Section 2.2 that T will not be compact. In the former

case, the results in [22] apply to the operator T .

For structure variables that cannot decrease over time, i.e., when the probability

of shrinkage is zero, the growth subkernel g(y, x) is unbounded. To get an intuitive

idea for why this is the case, suppose that G is the integral operator with kernel

g(y, x); this operator models the somatic growth of individuals over one time step.

If individuals cannot shrink, and must continue to grow, then applying G repeatedly
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yields a population dominated by individuals near the maximum body size. Since

g(y, x) does not incorporate mortality, the growth subkernel g(y, x) must capture the

growth of an increasingly concentrated population. Hence, g(y, x) will be unbounded

near the point (U,U), where U is the maximum body size. If the function g(y, x) is

unbounded, then the full IPM kernel k(y, x) will be as well.

In general, it is possible for compact integral operators to have unbounded kernels;

if this were the case for an IPM operator T , then the results proved in [22] would

still apply. But in this paper, we will show that assuming individuals do not shrink

implies not only that the kernel k(y, x) is unbounded, but also that the associated

integral operator is not compact. This means that the results proved in [22] do not

apply to these populations, thus making it unclear whether IPMs with non-compact

operators have an asymptotic growth rate or a stable stage distribution.

Most IPMs in the literature have compact operators. Examples include those

which model plant species that can shrink over time in poor growing conditions ([11,

17, 23, 24, 32, 44, 38]. Additionally, [10, 21, 15] used the biomass of sheep and wolf

individuals as their structure variable, which can also decrease in poor environmental

conditions. The paper [7] models the proportion of coral covered by a fungal infection,

which can decrease over the course of a time step. Alternatively, some papers have

used the length of fish and mollusks as structure variables, namely [1, 36, 43, 45] and

[46], presumably because these were the only data available for parameterizing their

IPM models. Since length cannot decrease from one time step to the next, their IPM

operators are non-compact.

In this thesis, we show that biologically relevant properties, such as the existence

of an asymptotic growth rate and a stable stage distribution for the population, still

hold for the non-compact IPM operator T . This allows ecologists to gain biological

insight from IPMs in which individuals cannot shrink between time steps.
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1.2 Mathematical Motivations

IPMs are generalizations of matrix population models of the form

~nt+1 = A~nt, ~n0 ∈ Rn, (1.2.1)

where A is an n × n matrix, and ~n0 is the initial population vector, both with non-

negative entries. The relevant spectral properties of the matrix A in these models

are guaranteed by the Perron-Frobenius Theorem. Under biologically reasonable

assumptions, population matrices have the following three properties (see [9]):

1. the spectral radius r(A) is positive, and is an eigenvalue for A. The right and

left eigenvectors ~v, ~v∗ associated to r(A) are the only eigenvectors of A which

can be normalized to have all positive entries;

2. the operator A has a “spectral gap”, meaning that

max{σ(A) \ {r(A)}} < r(A);

3. for any ~n0 ∈ Rn with nonnegative entries, and λ = r(A) the spectral radius of

A associated to the right and left eigenvectors ~v, ~v∗, we have 〈~n0, ~v
∗〉 > 0, and

lim
k→∞

Ak~n0

λk
= 〈~n0, ~v

∗〉~v,

where 〈·, ·〉 denotes the dot product in Rn.

In biological terms, property (3) means that the population has a long-term growth

rate of λ = r(A), and the vector ~v is known as the stable stage distribution. The vector

~v gives the relative proportions of each stage in the long-term population, or in other
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words, ~v captures the proportions one would expect to see in the population absent

any external perturbations.

The results in [27] show that certain compact operators have property (1), and

many authors have since obtained generalizations of this result for wider classes of

operators (for example, see the papers [3, 4, 20, 25, 26, 28, 29, 30, 37], and [42]).

Various authors have also obtained results like (2) for a wider class of operators (see

e.g. Chapter 12 of the book [26], and the references cited therein). In an appendix to

the paper [22], the authors showed that certain compact operators arising from IPMs

in mathematical ecology satisfy properties (1), (2), and (3).

In this thesis, we consider a class of operators which come from IPMs recently

constructed by mathematical ecologists, but for which the results in [22] do not apply.

Specifically, the operators we consider are not compact. Out of the papers listed

above, [4, 20, 25, 26, 29, 30, 37, 41, 42] considered operators T : X → X which are

not necessarily compact. Instead, the authors impose topological conditions on the

space X, or specific conditions on the operator T , in order to prove their results. We

note that IPMs are discrete-time models, but results like (1)-(3) above are known for

continuous-time models as well; see Chapters 8-10 in the book [13].

For our purposes, the results proved in [30], [41], and [42] will be useful to us

in showing that the operators we consider have properties (1) - (3) of the Perron-

Frobenius Theorem. Specifically, we will show that the operator T : L1 → L1 is

not compact, that it is strictly nonsupporting, and that its spectral radius r(T ) is a

pole of the resolvent operator R(z, T ). We will prove these facts in Sections 2.2, 2.3,

and 2.4 respectively. In Section 2.5, we will show that the non-compact operator T

has properties (1)-(3) above. This means that IPMs with non-compact operators of

the form we consider have the theoretical properties one would want in a population

model.
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1.3 Definition of the IPM Operator and its Components

For functional analysis concepts and notation, we follow [14]. All integrals will be

with respect to the Lebesgue measure µ, and “a.e” means “almost-everywhere” with

respect to µ. Let Ω := [L,U ] denote a closed and bounded interval of R. In IPMs,

the limits L, U will be positive values denoting the lower- and upper- limits for the

structure variable, respectively.

We will use the notation L1 := L1(Ω) to denote the Banach space of integrable

real-valued functions with norm

||ϕ||1 :=

∫ U

L

|ϕ(t)| dt.

The space L1 is the natural space to work in for biological applications, because the

norm ||ϕ||1 of the nonnegative population vector ϕ gives the total population. We will

also make use of the space L∞ = L∞(Ω), which is the space of Lebesgue-measurable,

essentially bounded functions with norm

||h||∞ := ess sup{|h(t)| | t ∈ Ω}.

We study integral operators T : L1 → L1 whose kernels take the form

k(y, x) = s(x)g(y, x) + b(y)f(x). (1.3.1)

Here, we will assume that the function s(x) is continuous, increasing, and positive on

Ω, with

sup
x∈Ω
{s(x)} < 1.

This means that each individual has a chance of surviving each time step, but also
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a chance of dying. We will assume that b(y) is the offspring distribution, bounded

almost-everywhere in Ω and positive almost-everywhere in the set [L, xb], for some

xb ∈ (L,U ], where we allow (but do not require) that b(y) can be zero for all y > xb.

In that case, xb is the largest size that an individual can attain in one time step

after birth. Additionally, we suppose that there is some x′ ∈ [L,U) such that f(x) is

almost-everywhere bounded away from zero for x ≥ x′. We have been unable to find

an IPM in which these assumptions on f(x) are not satisfied, and our results apply

just as well when f(x) > 0 throughout Ω (in this case, one can take x′ = L). Taken

together, these assumptions on s(x), b(y), and f(x) imply the existence of positive

numbers s0, s1, b1, and f0, f1 such that

0 < s0 ≤ s(x) ≤ s1 < 1, for almost every x ∈ Ω, (1.3.2)

0 < b(y) ≤ b1 <∞, for almost every y ∈ [xb, U ], (1.3.3)

0 < f0 ≤ f(x) ≤ f1 <∞, for almost every x ∈ [x′, U ] (1.3.4)

It will be convenient to assume that s1, b1, f1 are the least such values, and that s0,

f0 are the greatest such values.

We assume that g(y, x) is nonnegative on [L,U)2, and also that for each x ∈ [L,U),

∫ U

L

g(y, x) dy = 1. (1.3.5)

The assumption (1.3.5) means that g(y, x) is a probability distribution for each fixed

x ∈ [L,U). In biological terms, this means that a size x individual will have size

y ∈ [L,U) in the following time step with probability g(y, x). We will often refer to

g(y, x) as the growth subkernel of T .

Of particular interest to us in this paper are operators with a kernel of the form
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(1.3.1) such that

g(y, x) = 0, whenever y < x, (1.3.6)

and in this case we will say that g(y, x) is “zero below the diagonal”. When the

operator T models a stage-structured population such that individuals cannot move

to lower stages (for example, when Ω is a set of possible lengths, and individuals

exhibit indeterminate growth), g(y, x) satisfies (1.3.6). Note that we do not require

g(y, x) to be continuous, so in particular it may be positive for y = x and still satisfy

(1.3.6).

Taken together, assumptions (1.3.5) and (1.3.6) imply that g(y, x) is unbounded

in any neighborhood of the point (U,U) ∈ R2, which is why we assume g(y, x) is

defined on [L,U)2, rather than [L,U ]2.

Example 1.3.1. We have included Figure 1.1 below as an example of an unbounded

growth kernel from [45]; they include an extra parameter z for temperature, which

we set to 10.34◦C, the mean of the time series they consider. The function in Figure

1.1 is given by

g(y, x) =


ρ(y,x)∫ U

x ρ(y,x) dy
, y > x,

0, y ≤ x
,

where

ρ(y, x) :=
1√

2π(y − x)v(x)
exp

(
−(ln(y − x)− µ(x))2

2v(x)

)
, (1.3.7)

µ(x) := log

(
(m(x)− x)2√

(m(x)− x)2 + σ(x)2

)
, (1.3.8)

v(x) := log

(
1 +

σ(x)2

(m(x)− x)2

)
. (1.3.9)
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Figure 1.1: The growth kernel g(y, x) for the northern pike IPM

Equation 1.3.7 is the lognormal probability density function for the growth increment

(y − x). In equations (1.3.8) and (1.3.9), the function m(x) is the “average expected

size” function (which is usually fit to population data), and σ(x) is the standard

deviation of sizes at size x. Also, note that m(x) and σ(x) are functions of the size x

on a linear scale, hence why the conversions (1.3.8) and (1.3.9) are necessary.

In Figure 1.1, we left the surface unshaded in the region y < x, to indicate that

g(y, x) = 0 there. This is the way to incorporate the biological assumption that

individuals cannot transition to a smaller size; i.e., they cannot “shrink”. Note that

the plot becomes unbounded in a neighborhood of the point (U,U), where U is the

maximum size.

In [22], the IPM kernel is strictly positive and continuous, and hence bounded away
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from zero in the square [L,U ]2. We cannot make this same assumption, because we

allow the component functions g(y, x), b(y), and f(x) to possibly be zero in sets of

positive measure. Hence, we will need further assumptions to prove similar results to

those in [22]; we will denote these assumptions by (M), (R), and (S):

(M) there is a continuous, strictly increasing function η : [L,U ] → [L,U ] such that

η(U) = U , η(x) > x for all x ∈ [L,U), and

∫ U

η(x)

g(y, x) dy > 0, for a.e. x ∈ Ω, (1.3.10)∫ η−1(y)

L

g(y, x) dx > 0, for a.e. y > η(L), (1.3.11)

g(y, x) > 0, for a.e. (y, x) such that x < y < η(x); (1.3.12)

(R) there exists an ε1 > 0 and a closed rectangle R ⊆ [L,U)2 of the form

R := [U − ε1, U ]× [x1, x2],

where L ≤ x1 ≤ x2 ≤ y, such that g(y, x) > 0 almost-everywhere in R;

(S) there is some ε2 > 0 such that s(x) ≡ s1 for x ∈ [U − ε2, U ].

When constructing an IPM kernel from data for a specific population, one often fits

the average growth function, which gives the mean expected size for an individual

of size x to grow to in one time step. Depending on the form of g(y, x), one can

usually take take this average growth function to be η, or a related function like in

the example above where µ satisfies assumption (M). Assumption (R) looks onerous,

but if a growth kernel g(y, x) is obtained by fitting positive probability distributions

to data, it will satisfy assumption (R). Although (S) is a technical condition we need



12

to prove a result, we believe it is reasonable because the operators in [36, 43, 45, 46]

all satisfy it.

For notational convenience, we will sometimes write T : L1 → L1 in terms of its

components

T = GS + bF,

where G : L1 → L1 is the integral operator defined by

(Gϕ)(y) :=

∫ U

L

g(y, x)ϕ(x) dx, (1.3.13)

S : L1 → L1 is multiplication by s(x):

(Sϕ)(x) := s(x)ϕ(x), (1.3.14)

F : L1 → R is the fecundity functional defined by

Fϕ =

∫ U

L

f(x)ϕ(x) dx, (1.3.15)

and b = b(y) is the offspring distrubition. We will call G the growth operator,

the composition GS as the “growth and survival” operator, and bF the “fecundity”

operator. It is straightforward to show that G and S, are bounded operators, and

that F is a bounded linear functional.

1.4 Mathematical Preliminaries

Given a Banach space X, we denote the space of continuous linear functionals on X

as X∗; the space X∗ is known as the Banach dual space of X. In this paper, we will

only consider the case where X = L1, in which case X∗ = L∞, and the functionals
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are represented by some h ∈ L∞ acting by integration on elements in L1. We will

use the inner-product notation 〈ϕ, h〉 to denote this action; that is, for ϕ ∈ L1 and

h ∈ L∞, we define

〈ϕ, h〉 :=

∫ U

L

ϕ(t)h(t) dt. (1.4.1)

We will sometimes abuse terminology by referring to the element “h” as a functional,

but it should be clear we mean it represents a functional given by (1.4.1).

Given a linear operator T : X → Y between normed vector spaces X and Y , we

denote the operator norm of T to be the quantity

||T || := sup{||Tϕ||Y | ||ϕ||X = 1},

where the subscripts denote which space the norm is taken in. If this operator norm

is finite, we say that T is a bounded operator. It is straightforward to show that

the integral operator T : L1 → L1, with kernel k(y, x) satisfying (1.3.1) - (1.3.5), is

bounded.

The Banach adjoint of T , denoted T ∗ : X∗ → X∗, is the unique operator such

that

〈Tϕ, h〉 = 〈ϕ, T ∗h〉,

for all x ∈ X and h ∈ X∗.

For a linear operator T : X → X, with X a vector space over C, the spectrum of

T is the set

σ(T ) := {z ∈ C | zI − T is not boundedly invertible}.
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Here, I is the identity operator. Additionally, we denote the spectral radius of the

operator T by r(T ), where

r(T ) := sup{|z| | z ∈ σ(T )}.

The peripheral spectrum σp(T ) are those z ∈ σ(T ) such that |z| = r(T ).

Another subset of σ(T ) which will be useful to us is known as the essential spec-

trum; we will denote this subset by σe(T ). There are many definitions of the essential

spectrum in the literature, but we use the one given in [6] and [20]:

Definition 1.4.1. The essential spectrum σe(T ) of an operator T is the collection of

complex numbers z ∈ σ(T ) such that at least one of the following conditions holds:

1. the range of (zI − T ) is not closed;

2. z is a limit point of σ(T );

3. ∪∞n=1 ker(zI − T )n is infinite-dimensional,

where ker(·) denotes the kernel of its argument.

We also make use of the essential spectral radius of the operator T , which we

denote re(T ), and which is defined analogously to the ordinary spectral radius:

re(T ) := sup{|z| | z ∈ σe(T )}.

For the other common definitions of the essential spectrum, each has the same essen-

tial spectral radius, a fact proved in [19].

Note that the operators in IPMs are naturally operators on a real vector space; in

order to talk about the spectrum of an operator T : X → X, with X a vector space
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over R, we define the complexifications of T and X, denoted Tc and Xc, where

Xc := X ⊕ iX, (1.4.2)

and Tc : Xc → Xc is the linear operator such that

Tc(ϕ1 + iϕ2) := T (ϕ1) + iT (ϕ2). (1.4.3)

When we refer to “the spectrum of T”, where T is an operator on a real vector space,

we actually mean the spectrum of its complexification Tc. One can show that Xc is a

Banach space over C, with addition and scalar multiplication defined in the natural

way, and with the norm || · ||c defined by

||ϕ1 + iϕ2||c :=
1√
2
· sup

0≤θ<2π
(|| cos(θ)ϕ1 − sin(θ)ϕ2||+ || sin(θ)ϕ1 + cos(θ)ϕ2||)

The complexification Tc is linear and bounded if and only if T is also linear and

bounded. Additionally, the norms of T and Tc coincide:

||T || = ||Tc||c. (1.4.4)

For more information concerning complexifications of real vector spaces and operators,

see [20].

To compute spectral radii, we will make use of Gelfand’s formula, which is the

statement that

r(T ) = lim
n→∞

||T n||1/n. (1.4.5)
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The resolvent of T is the function R(z, T ) := (zI − T )−1, which is well-defined in the

resolvent set ρ(T ) := C\σ(T ). It turns out that R(z, T ) is a holomorphic function in

ρ(T ), and in the case that |z| > r(T ), we can write R(z, T ) as a so-called Neumann

series given by

R(z, T ) =
∞∑
k=0

T k

zk+1
. (1.4.6)

In order to study the essential spectrum σe(T ), we will make use of the ball measure

of non-compactness, or ball MNC for short. Some authors also use the term Hausdorff

MNC. We follow the definitions, terminology, and results in [2]:

Definition 1.4.2. The ball measure of non-compactness of a subset V of the vector

space X, denoted β(V ), is given by

β(V ) := inf{r > 0 | V can be covered by finitely many balls of radius r}.

Clearly 0 ≤ β(V ) ≤ ∞; other properties of β(·) which will be useful to us are:

1. β(V ) = 0 if and only if V is pre-compact (that is, if and only if the closure of

V is compact);

2. For the set

V +W := {v + w | v ∈ V,w ∈ W},

we have

β(V +W ) ≤ β(V ) + β(W )

for all V , W ⊆ X;

3. V1 ⊆ V2 implies that β(V1) ≤ β(V2);
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4. β(λV ) = |λ| β(V ) for each λ ∈ C;

5. For any point x0 ∈ X, we have β(V + x0) = β(V ).

For further useful properties that β satisfies, see [2]. There are other commonly

used MNC’s, but the ball-MNC β is especially useful for us because there is a formula

for β(V ) when V ⊆ Lp(R), for 1 ≤ p ≤ ∞ (see [2]):

β(V ) =
1

2
lim
δ→0

sup
ϕ∈V

sup
0<τ≤δ

||ϕ− ϕτ ||X (1.4.7)

where ϕτ (t) := ϕ(t + τ). However, we will only consider the case when X = L1(Ω),

where Ω = [L,U ]. Note that we can apply (1.4.7) by extending the domains of the

functions in L1(Ω) to all of R by setting ϕ(x) = 0 for x outside Ω, for every ϕ ∈ L1(Ω).

There is a formula for re(T ), first given in [35], which makes use of the ball-MNC

β. Letting U ⊆ X denote the unit ball in the space X, and writing β(T ) := β(T (U )),

we have that

re(T ) = lim
n→∞

β(T n)1/n (1.4.8)

Note the similarity between this formula for the essential spectral radius, and Gelfand’s

formula (1.4.5) for the ordinary spectral radius. Using the formulas (1.4.7) and (1.4.8)

together, we will be able to compute the essential spectral radius of the non-compact

operator T : L1 → L1 in Section 2.4.

The operators we study in this paper are examples of positive operators, which

means that they are invariant on a cone K in a Banach space X. We follow the book

[26] for definitions and theorems regarding cones.

Definition 1.4.3. A closed convex set K of the real Banach space X is called a cone



18

if the following conditions hold:

1. for any x ∈ K and a ≥ 0, the element ax is in K,

2. for any pair x, y ∈ K, the element x+ y is in K, and

3. K ∩ −K = {0}.

Defined in this way, we get a partial ordering on the cone K: for two elements x,

y ∈ K, we say that x ≤ y if and only if y − x ∈ K.

It is straightforward to check that the collections of nonnegative a.e. functions

in L1 and L∞ are cones; we refer to these as the standard cones in their respective

spaces.

Given a cone K, we will also make use of its dual cone:

Definition 1.4.4. Suppose that X is a Banach space with cone K, and let X∗ be the

Banach dual space of X. The dual cone of K, denoted K∗ ⊆ X∗, is the collection of

all continuous linear functionals h such that h(x) ≥ 0, for all x ∈ K.

It is a straightforward exercise to show that if K is the standard cone in L1, its

dual cone K∗ is the standard cone in L∞. For the next definition, we use the notation

K −K := {x− y | x, y ∈ K}.

Definition 1.4.5. An operator T : X → X, (possibly nonlinear), with X a real

Banach space, is called positive with respect to a cone K ⊆ X if T (K) ⊆ K.

This definition yields a partial order on the set of positive operators: if T1, T2 are

positive operators, we say that T1 ≤ T2 if T2 − T1 is a positive operator.

We will sometimes call an operator simply “positive”, and drop references to the

particular cone K, as we are only concerned with the standard cones K ⊆ L1 and
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K∗ ⊆ L∞. Hereafter, when we write K and K∗, we mean the standard cones in L1,

L∞ respectively.

Example 1.4.1. Supposing it is well-defined, the integral operator T : L1 → L1 of

the form

(Tϕ)(y) :=

∫ U

L

k(y, x)ϕ(x) dx

is an example of a positive operator with the respect to K, whenever k(y, x) ≥ 0

almost-everywhere. Additionally, the Banach dual T ∗ : L∞ → L∞ is also a positive

operator in that it maps K∗ into K∗, and is given by

(T ∗ϕ∗)(x) =

∫ U

L

k(y, x)ϕ∗(y) dy.

That is, the Banach adjoint of an integral operator is obtained by “transposing” the

kernel function, i.e., by integrating with respect to y instead of x.

In Section 2.3, we will show that the IPM operator in this paper is strictly non-

supporting, which is a concept introduced in [41], and further elaborated in [30, 33]

and [34]. We follow the terminology of [30] on this topic:

Definition 1.4.6. Suppose T is a positive operator with respect to the cone K, and

suppose that ϕ ∈ K, ϕ∗ ∈ K∗ are both nonzero.

1. T is called nonsupporting if for every pair ϕ, ϕ∗ there is a positive integer

p = p(ϕ, ϕ∗) such that 〈T nϕ, ϕ∗〉 > 0 for every n ≥ p.

2. T is called strictly nonsupporting if for every pair ϕ, ϕ∗ there is a positive

integer p = p(ϕ) such that 〈T nϕ, ϕ∗〉 > 0 for every n ≥ p.

Note that if T is strictly nonsupporting, it is also nonsupporting. We will also

make use of the following concepts in proving our main results:
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Definition 1.4.7. Given a cone K, an element ϕ ∈ K is called quasi-interior if

〈ϕ, ϕ∗〉 > 0 for all nonzero ϕ∗ ∈ K∗.

Definition 1.4.8. Given a cone K, an element ϕ∗ ∈ K∗ is called strictly positive if

〈ϕ, ϕ∗〉 > 0 for all nonzero ϕ ∈ K.
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Chapter 2

Spectral Properties of the IPM Operator T

2.1 General Results

In this section, we will prove some fundamental facts about the operator T : L1 → L1

which will be useful in demonstrating many of the results that follow. In particular,

at the end of Section 2.2 we will prove that no power T k is weakly compact (and in

particular not compact) under the assumption (1.3.6). This indicates that we will

not be able to use the Krein-Rutman theorem, or its generalizations given in [26], to

obtain results about the spectral properties of T .

Lemma 2.1.1. Let G : L1 → L1 be the growth operator defined in (1.3.13), and

consider the standard cone K ⊆ L1. Then for any ϕ ∈ K, we have that ||Gϕ||1 =

||ϕ||1.

Proof. This is a quick application of Fubini-Tonell:

||Gϕ||1 =

∫ U

L

∫ U

L

g(y, x)ϕ(x) dx dy =

∫ U

L

ϕ(x)

∫ U

L

g(y, x) dx︸ ︷︷ ︸
=1, a.e. x

dy = ||ϕ||1,

where the last equality comes from the fact that ϕ ≥ 0.

Corollary 2.1.1. For each k ≥ 1 and ϕ ∈ K ⊆ L1, we have ||Gkϕ||1 = ||ϕ||1.
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We mentioned earlier that the kernel function g(y, x), when zero below the di-

agonal, models the growth of individuals who cannot shrink; we make this intuition

rigorous in the next lemma:

Lemma 2.1.2. Suppose that ϕ ∈ K ⊆ L1 is such that for some a ∈ [L,U), ϕ(x) = 0

whenever x < a. Then (Gϕ)(y) = 0 whenever y < a as well.

Proof. Take some ϕ ∈ K satisfying the properties above. Fixing an arbitrary y < a,

we have that

(Gϕ)(y) =

∫ U

L

g(y, x)ϕ(x) dx =

∫ U

a

g(y, x)ϕ(x) dx

since ϕ(x) = 0 for x < a. Because y < a and g(y, x) = 0 whenever y < x, we

conclude that the second integral above is equal to zero. Since the choice of y < a

was arbitrary, we have that (Gϕ)(y) = 0 for any y < a.

With this result, we immediately obtain the corollary

Corollary 2.1.2. Suppose ϕ ∈ K and a ∈ [L,U) are as in Lemma 2.1.2. For any

k ≥ 1, we have (Gkϕ)(y) = 0 whenever y < a as well.

Lemma 2.1.3. Let η(x) be the continuous and increasing function described in (M).

For any x ∈ [L,U ], we have that ηn(x)→ U as n→∞, where

ηn(x) := η(ηn−1(x)), and η0(x) := x.

Proof. The result is immediate for x = U , so suppose that L ≤ x < U . Since η is
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strictly increasing, we have that

x < η(x) < η2(x) < · · · ηn(x) < · · · ≤ U

for every n. The sequence {ηn(x)} is increasing and bounded above by U , so it must

have some limit M . We claim that M = U ; to see this, suppose otherwise that

M < U . Since η is continuous, we have that

M = lim
n→∞

ηn(x) = η
(

lim
n→∞

ηn−1(x)
)

= η(M),

but this contradicts the assumption that η(x) > x for all x < U . Therefore, we

conclude that ηn(x)→ U for each x < U .

It will be useful to define the truncated growth subkernel g0(y, x), where

g0(y, x) :=

 g(y, x), x ∈ [L,U), y ≥ η(x)

0, else
,

Also, define G0 : L1 → L1 to be the integral operator with kernel g0(y, x). We

immediately have that G0 ≤ G.

Lemma 2.1.4. For any ϕ ∈ K \ {0}, the function G0ϕ is not the zero-function.



24

Proof. We prove the contrapositive, so suppose that G0ϕ = 0, for some ϕ ∈ K. Then

0 = ||G0ϕ||1

=

∫ U

L

∫ U

L

g0(y, x)ϕ(x) dx dy

=

∫ U

L

ϕ(x)

∫ U

L

g0(y, x) dy dx

=

∫ U

L

ϕ(x)

∫ U

η(x)

g(y, x) dy dx

which implies that ϕ ≡ 0 a.e., since we have assumed that
∫ U
η(x)

g(y, x) dy > 0 for a.e.

x ∈ [L,U).

Corollary 2.1.3. For any k ≥ 1, Gk
0ϕ is not the zero function.

Lemma 2.1.5. Suppose that ||ϕ||1 > 0. Then for every n ∈ N,

∫ U

ηn(L)

(Gn
0ϕ)(y) dy > 0.

Proof. We proceed by induction. By Lemma 2.1.4, we know that G0ϕ is nonzero, so

||G0ϕ||1 > 0. By definition of the kernel g0, we have that g0(y, x) ≡ 0 for x ∈ [L,U)

and y < η(L), and thus we have

0 <

∫ U

L

(G0ϕ)(y) dy =

∫ U

η(L)

(G0ϕ)(y) dy,

so the base-case holds.

Next, suppose that ∫ U

ηk(L)

(Gk
0ϕ)(y) dy > 0
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for some k. Then, for the sake of a contradiction, suppose that

0 =

∫ U

ηk+1(L)

(Gk+1
0 ϕ)(y) dy

=

∫ U

ηn+1(L)

∫ U

L

g0(y, x)(Gk
0ϕ)(x) dx dy

=

∫ U

L

(Gk
0ϕ)(x)

(∫ U

ηn+1(L)

g0(y, x) dy

)
dx (2.1.1)

Assumption (M) implies that
∫ U
η(x)

g0(y, x) dy > 0 for a.e x ∈ [L,U). This implies

that

0 <

∫ U

ηn+1(L)

g0(y, x) dy =

∫ U

η(ηn(L))

g0(y, x) dy

for a.e. x in the interval (ηn(L), U). Comparison of this with (2.1.1) yields that

Gk
0ϕ = 0 on the interval (ηn(L), U), but this contradicts the induction hypothesis.

Therefore,

0 <

∫ U

ηn(L)

(Gn
0ϕ)(y)dy

for every n ∈ N.

Corollary 2.1.4. For any nonzero ϕ ∈ K and ε > 0, there is an N ∈ N such that

for n ≥ N , Gnϕ is positive on a subset of positive measure in the interval [U − ε, U ].

Proof. Fix ε > 0, and let N ∈ N be the integer guaranteed by Lemma 2.1.3 such that

ηn(L) > U − ε for every n ≥ N . Applying the result of Lemma 2.1.5, we have

∫ U

U−ε
(Gnϕ)(y) dy ≥

∫ U

ηn(L)

(Gnϕ)(y) dy ≥
∫ U

ηn(L)

(Gn
0ϕ)(y) dy > 0.

Therefore, Gnϕ > 0 on a subset of positive measure in the interval [U − ε, U ] for any

n ≥ N .
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2.2 Each Operator T k is Not Compact

We now move on to showing that all powers of the operator T , with growth kernel

g(y, x) zero below the diagonal, fail to be compact. This is in contrast to the case

with a bounded kernel considered in [22]. In fact, we will prove a stronger statement:

every power T k fails to be weakly compact. The main result of this section is:

Theorem 2.2.1. For the integral operator T : L1 → L1 with kernel given by (1.3.1)

and with g(y, x) zero below the diagonal, the operator T k is not weakly compact for

any k ≥ 1.

Corollary 2.2.1. The operator T k : L1 → L1 is not compact for any k ≥ 1.

To prove Theorem 2.2.1, we use the fact that weak compactness and weak sequen-

tial compactness are equivalent in Banach spaces. This is known as the Eberlein-

Šmulian theorem, and is Theorem V.6.1 in [16]:

Theorem 2.2.2 (Eberlein-Šmulian). Let X be a Banach space. Then the following

are equivalent:

1. X is weakly compact,

2. X is weakly sequentially compact, and

3. X is weakly limit-point compact.

We will use the following characterization of weakly sequentially compact sets in

L1, which is Theorem IV.8.11 in [16]:
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Theorem 2.2.3. The family F ⊆ L1(Ω) is weakly sequentially compact if and only

if

lim
µ(E)→0

∫
E

h(s) dµ = 0 (2.2.1)

uniformly for h ∈ F , where µ is the Lebesgue measure and E ⊂ Ω is any measurable

subset.

We now have all the ingredients needed to prove the main theorem of this section:

Proof of Theorem 2.2.1. Let U ⊆ L1 be the closed unit ball. Fix k ≥ 1, and define

F := T k(U ) ⊆ L1. We note that (2.2.1) holds for any fixed h ∈ F ; however, we will

show that this limit is not uniform on F . To this end, put δn := 1
n
(U − L) for each

n ∈ N, and define En := [U − δn, U ]; then µ(En)→ 0.

Further, define the functions f

hn :=
1

δn
· χEn(x)

for each n ≥ 1, where χEn is the characteristic function on En. Note that

||hn||1 =
1

δn

∫ U

L

χEn(x) dx =
1

δn

∫ U

U−δn
dx =

1

δn
· δn = 1,

for each n. Hence, each hn ∈ U and thus T khn ∈ F . Also, Corollary 2.1.1 implies

that ||Gkhn||1 = 1, for each n.

By assumption on s(x), there is an s0 such that 0 < s0 ≤ s(x) for all x ∈ [L,U ].

We thus have the lower bound

∫
En

(T khn)(y) dy ≥ sk0

∫
En

(Gkhn)(y) dy = sk0 · ||Gkhn||1 = sk0 > 0.
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This implies that the limit (2.2.1) is not uniform on the set F . The contrapositive

of Theorem 2.2.3 gives that the collection F is not weakly sequentially compact, and

the contrapositive of Eberlein-Šmulian implies that that F is not weakly compact.

Therefore, T k fails to be a weakly compact operator for any k, since the choice of k

was arbitrary.

We note here that the growth operator G is what makes T k non-compact. By a

similar argument as in the previous proof, one can show that the limit (2.2.1) is not

uniform on the set Gk(U ) for any k ≥ 1.

Theorem 2.2.1 and its corollary show that neither the Krein-Rutman theorem,

nor its most direct generalization (see Theorem 9.4 in the book [26]) guarantee that

T : L1 → L1 has a positive eigenvector corresponding to its spectral radius.

However, all is not lost: the operator T does have an eigenvector corresponding to

its spectral radius, which we prove in Section 2.5. Before we will be able to do that,

we will need to show that T is strictly nonsupporting, and that λ = r(T ) is a pole of

the resolvent R(z, T ).

2.3 The Operator T is Strictly Nonsupporting

Our goal in this section will be to prove that the IPM operator T is strictly nonsup-

porting (see Definition 1.4.6).

We will be able to prove a stronger result: for the IPM operator T , the integer p

in Definition 1.4.6 will actually be independent of the choice of the nonzero ϕ ∈ K.

Also, since we only consider the case when X = L1, showing that T nϕ > 0 almost-

everywhere will be sufficient to showing that T is strictly nonsupporting. Hence, the

main theorem of this section is:
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Theorem 2.3.1. Suppose that the operator T = GS + bF satisfies the assumptions

(M) and (R). Then there is a p ∈ N such that for every nonzero ϕ ∈ K ⊆ L1 and

n ≥ p, the element T nϕ is positive almost everywhere in Ω.

From this, we get the quick corollary:

Corollary 2.3.1. The operator T is strictly nonsupporting.

Proof of Corollary 2.3.1. Let p ∈ N denote the integer guaranteed by Theorem 2.3.1,

and take any nonzero elements ϕ ∈ K, ϕ∗ ∈ K∗. Then ϕ∗ acts on elements of L1 by

integration, and also
∫ U
L
ϕ∗(t) dt > 0, since ϕ∗ is nonzero. Fix some n ≥ p, then we

have

〈T nϕ, ϕ∗〉 =

∫ U

L

(T nϕ)(t)ϕ∗(t) dt > 0;

since T nϕ is positive almost-everywhere, and ϕ is positive on a set of positive mea-

sure. Therefore, T is strictly nonsupporting since the nonzero functions ϕ, ϕ∗ were

arbitrary, and so was the choice of n ≥ p.

To prove Theorem 2.3.1, we will first give some lemmas; the first uses the function

η : Ω→ Ω defined in assumption (M).

Lemma 2.3.1. Suppose ϕ(x) > 0 almost-everywhere in [L, x̂], for some x̂ ∈ (L,U ].

Then (Gϕ)(y) > 0 for almost-every y ∈ [L, η(x̂)].

Proof. Since we only need to prove the statement for a.e. y ∈ [L, η(x̂)], we can assume

without loss of generality that y ∈ [L, η(x̂)] satisfies the inequalities (1.3.11) - (1.3.12).
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First, suppose that y ∈ (L, η(x̂)); in this case, assumption (1.3.12) implies that

g(y, x) > 0 for (y, x) ∈ E := {y} × [L, x̂]. Thus, g(y, x)ϕ(x) > 0 a.e. on E as well, so

(Gϕ)(y) =

∫ U

L

g(y, x)ϕ(x)dx ≥
∫ x̂

L

g(y, x)ϕ(x) dx > 0,

as claimed.

Next, suppose that y ∈ [η(L), η(x̂)]; in this case, assumption (1.3.11) says that

∫ η−1(y)

L

g(y, x) dx > 0.

This implies that g(y, x) > 0 on some subset of positive measure contained in {y} ×

[L, η−1(y)]. Note also that η−1(y) < x̂ since η is strictly increasing, so ϕ(x) > 0 for

a.e. x ∈ [L, η−1(y)]. Then we have

(Gϕ)(y) =

∫ U

L

g(y, x)ϕ(x) dx ≥
∫ η−1(y)

L

g(y, x)ϕ(x) dx > 0,

as claimed.

From this, we get the corollary:

Corollary 2.3.2. If ϕ(x) > 0 on [L, x̂], with x̂ as in the above lemma, then Gkϕ > 0

almost-everywhere on [L, ηk(x̂)].

The proof of this is immediate, but we also get:

Corollary 2.3.3. Suppose ϕ(x) > 0 almost-everywhere on [L, x̂]. Then for any

ŷ ∈ [L,U), there is an N ∈ N such that Gnϕ is positive almost-everywhere on [L, ŷ]

for all n ≥ N .
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Proof. Fix ŷ ∈ (L,U). From Lemma 2.1.3, we know that ηn(x) → U for any x ∈

[L,U ]. Thus, there is an N = N(x̂) such that ηn(x̂) > ŷ for all n ≥ N . Since η(x̂) > x̂

and η is assumed to be strictly increasing, we have that

[L, ŷ] ⊆ [L, ηN(x̂)] ⊆ [L, ηn(x̂)],

for all n ≥ N . Corollary 2.3.2 says that Gnϕ > 0 almost-everywhere on [L, ηn(x̂)], so

we conclude that Gnϕ > 0 almost-everywhere on [L, ŷ] as well, for all n ≥ N .

Note that both Corollaries 2.3.2 and 2.3.3 are still true when applied to the op-

erator GS in place of G, since s(x) is positive almost-everywhere. With these facts,

we can now prove the main theorem of this section:

Proof of Theorem 2.3.1. Fix some nonzero ϕ0 ∈ K; then there is an x0 < U such

that ϕ0(x) > 0 on a subset of positive measure in [L, x0]. Corollary 2.1.4 implies that

there is some N0 ∈ N such that for n ≥ N0, Gnϕ0 > 0 on a subset of positive measure

in [x′, U ], where x′ is the “size of maturity” from assumption (1.3.4). In particular,

we have that F ((GS)N0ϕ0) > 0, so

ϕ1 = (TN0+1ϕ0)(x) ≥ b(x)F ((GS)N0ϕ0) > 0

for almost every x ∈ [L, xb], where xb is the maximum offspring size given in assump-

tion (1.3.3).

Next, choose some y with U − ε1 < y < U , where ε1 > 0 is the value from

assumption (R). Using Lemma 2.1.3, choose N1 ∈ N such that ηn(xb) > y for each

n ≥ N1. Then we have two cases to consider:
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Case 1: Suppose x ∈ [L,U − ε1]. Then Corollary 2.3.2 implies that

(T nϕ1)(x) ≥ ((GS)nϕ1)(x) > 0,

except possibly on a set of measure zero.

Case 2: Suppose x ∈ (U − ε1, U ]. Note that (GS)n−1ϕ1 is positive almost every-

where on [L, y] by the choice of N1; then for n ≥ N1 + 1, assumption (R) guarantees

that

(T nϕ1)(x) ≥ ((GS)nϕ1)(x)

= (GS((GSn−1)ϕ1))(x)

=

∫ U

L

g(x, t)s(t)((GS)n−1ϕ1)(t) dt

≥ sn0

∫ t2

t1

g(x, t)(Gn−1ϕ1)(t) dt

> 0,

except possibly on a set of measure zero, since g(x, t) > 0 for almost-every (x, t) ∈

[U − ε1, U ] × [t1, t2], and because (Gn−1ϕ1) is positive almost-everywhere on [t1, t2],

as t1, t2 < y.

Therefore, for n ≥ N2 := N0 + N1 + 1, we have that T nϕ0 is positive almost

everywhere in [L,U ], which proves the claim since ϕ0 ∈ K was arbitrary and nonzero.

2.4 The Spectral Radius r(T ) is a Pole of the Resolvent R(z, T )

Now that we have proved the operator T is strictly nonsupporting, we move on

to proving that λ = r(T ) is a pole of the resolvent R(z, T ); for complex analysis
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terminology, we follow [40]. For clarity, we give a short overview of this section: in

Lemmas 2.4.3 - 2.4.6 and the intervening corollaries, we compute the spectral radius

r(GS), and the essential spectral radii re(GS), re(T ) explicitly; it turns out that these

three values coincide. Lemmas 2.4.7 - 2.4.9 and Lemma 2.4.2 serve to show that σ(T )

contains a value larger than re(T ); this implies that λ = r(T ) > re(T ), so λ is not

an element of the essential spectrum σe(T ). The remaining results in the section

demonstrate that λ is indeed a pole of the resolvent R(z, T ).

We begin with a lemma about the MNC β, which follows from properties listed

in Definition 1.4.2.

Lemma 2.4.1. Let X be a topological vector space, and suppose V , W ⊆ X with W

pre-compact; then β(V +W ) = β(V ).

Proof. Let V , W ⊆ X be as above, where X is some topological vector space. Prop-

erties (1) and (2) in Definition 1.4.2 imply that

β(V +W ) ≤ β(V ) + β(W ) = β(V ),

because W is pre-compact. Since V ⊆ V +W , Property (3) implies that

β(V ) ≤ β(V +W ).

Hence,

β(V ) ≤ β(V +W ) ≤ β(V ),

and we conclude that β(V ) = β(V +W ).

Proposition 1 in [42] states that r(A) ∈ σ(A) for any operator A : X → X which
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is positive with respect to a normal cone K. Since the standard cone K ⊂ L1 is

normal (see [26]), we get the following lemma for the IPM operator T :

Lemma 2.4.2. The spectral radius λ = r(T ) is an element of the spectrum σ(T ).

We now turn our attention to the growth operator G : L1 → L1. The following

lemmas are interesting because they demonstrate that the assumption (1.3.5) allows

us to compute upper bounds for β(Gn), whereas (1.3.6) allows us to compute lower

bounds. We again denote U ⊆ L1 to be the closed unit ball.

Lemma 2.4.3. Suppose G : L1 → L1 satisfies (1.3.5). Then for all k ≥ 1, we have

that

β(Gk) := β(Gk(U )) ≤ 1,

with equality when g(y, x) satisfies (1.3.6).

Proof. Fix k ≥ 1, and fix δ, τ , and ϕ such that, 0 < τ ≤ δ, and ϕ ∈ Gk(U ). Then

there is a ψ ∈ U such that

ϕ(t) =

∫ ∞
−∞

g(t, x)(Gk−1ψ)(x) dx

ϕτ (t) := ϕ(t+ τ) =

∫ ∞
−∞

g(t+ τ, x)(Gk−1ψ)(x) dx.

Also, Corollary 2.1.1 implies that ||Gnψ||1 = 1 for all n, in particular for n = k and

n = k − 1. Of course, in the case of k = 1, this is merely saying that ||G0ψ||1 =
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||ψ||1 = 1. Then for k > 1, we have

||ϕ− ϕτ ||1 =

∫ ∞
−∞

∣∣∣∣∫ ∞
−∞

(g(y, x)− g(y + τ, x))(Gk−1ψ)(x) dx

∣∣∣∣ dy
≤
∫ ∞
−∞
|(Gk−1ψ)(x)|

∫ ∞
−∞
|g(y, x)− g(y + τ, x)| dy dx

≤
∫ ∞
−∞
|(Gk−1ψ)(x)|

(∫ ∞
−∞
|g(y, x)| dy +

∫ ∞
−∞
|g(y + τ, x)| dy

)
dx

= 2 ·
∫ ∞
−∞
|(Gk−1ψ)(x)| dx

= 2.

Applying formula (1.4.7), we conclude that

β(Gk) =
1

2
lim
δ→0

sup
ϕ∈G(U )

sup
0<τ≤δ

||ϕ− ϕτ || ≤ 1,

since δ, τ ≤ δ, and ϕ chosen above were arbitrary. This proves the first part of the

claim.

Next, suppose that g(y, x) satisfies 1.3.6; we will show that 1 ≤ β(G). To this

end, fix δ > 0 and define the function

ϕ(x) :=
1

δ
· χEδ(x),

where χE is the indicator function on E, and Eδ := [U − δ, U ]. Then ||ϕ||1 = 1, and

also ||Gkϕ||1 = ||(Gkϕ)τ ||1 = 1 by Corollary 2.1.1, where (Gkϕ)τ for 0 < τ ≤ δ is the

translated function in (1.4.7).

By Corollary 2.1.2, the support of the function Gkϕ is a subset of Eδ, and the

support of the translate (Gkϕ)τ is a subset of [U − δ− τ, U − τ ]. Thus, for τ = δ, Gkϕ

and (Gkϕ)τ have disjoint supports. This means that the quantity ||Gkϕ− (Gkϕ)τ ||1
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is maximized when τ = δ, in which case

||Gkϕ− (Gkϕ)τ ||1 = ||Gkϕ||1 + ||(Gkϕ)τ ||1 = 2.

Hence,

1 ≤ 1

2
lim
δ→0

sup
ϕ∈U

sup
0<τ≤δ

||Gkϕ− (Gkϕ)τ ||1 = β(Gk).

Therefore, β(Gk) = 1 whenever g(y, x) = 0 below the diagonal, since β(Gk) ≤ 1 as

well.

Lemma 2.4.3 is an interesting addition to the result that Gk fails to be compact

whenever g(y, x) is zero below the diagonal. One can show that β(U ) = 1, and

Lemma 2.4.3 shows that for every k, the set Gk(U ) is just as “non-compact” as U .

In the following lemmas, we consider the growth and survival operator GS. Recall

that

s1 := sup
x∈Ω
{s(x)} = s(U) (2.4.1)

Lemma 2.4.4. For the operator GS : L1 → L1, we have

β((GS)k) ≤ sk1,

with equality holding when g(y, x) satisfies (1.3.6).

Proof. Note that s(x) ≤ s1 by assumption, which implies that (GS)k(U ) ⊆ sk1G(U )

for all k. Properties (3) and (4) of β given above imply that

β((GS)k) ≤ β(sk1G
k) ≤ sk1β(Gk) ≤ sk1,
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which proves the first claim.

To show the second claim, we will show that s1 ≤ β((GS)k); to this end, fix k ≥ 1

and δ > 0. Let ϕ and Eδ be as in Lemma 2.4.3. For notational convenience, put

ψ := (GS)kϕ. Recall that ψ(y) = 0 for y < U − δ, and that ||ψ||1 = 1. Letting

ψτ denote the τ -translate of ψ, we have that the expression ||ψ − ψτ ||1 is maximized

when τ = δ, since in this case ψ and ψτ have disjoint supports. Then we have

sup
0<τ≤δ

||ψ − ψτ ||1 = ||ψ − ψδ||1 = ||ψ||1 + ||ψδ||1 = 2||(GS)kϕ||1 ≥ 2s(U − δ)k,

where the inequality comes from the fact that s(x) is increasing. Since we can define

such a ϕ for any choice of δ > 0, and because s(x) is continuous, we conclude that

β((GS)k) =
1

2
lim
δ→0

sup
ϕ∈U

sup
0<τ≤δ

||ψ − ψτ ||1 ≥
1

2
lim
δ→0

2s(U − δ)k = sk1,

which proves the second claim.

This result allows us to easily compute the essential spectral radius re(GS):

Corollary 2.4.1. The essential spectral radius of GS satisfies the bound re(GS) ≤ s1,

with equality when g(y, x) satisfies (1.3.6).

Proof. Combining the first result in Lemma 2.4.4 with formula (1.4.8) yields

re(GS) = lim
k→∞

β((GS)k)1/k ≤ (sk1)1/k = s1.

When g(y, x) is zero below the diagonal, the second result in Lemma 2.4.4 combined
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with formula (1.4.8) yields

s1 ≤ lim
k→∞

β((GS)k)1/k = re(GS),

which proves the claim.

Our next lemma shows an important relationship between the ordinary spectral

radius of GS, and its essential spectral radius:

Lemma 2.4.5. The spectral radius of GS satisfies

r(GS) ≤ s1,

with equality when g(y, x) satisfies (1.3.6).

Proof. Noting that ||(GS)k||1 ≤ sk1||Gk||1 = sk1 for all k, we have by Gelfand’s formula

(1.4.5) that r(GS) ≤ s1, which demonstrates the first claim.

Note that σe(GS) ⊆ σ(GS), so necessarily re(GS) ≤ r(GS). When g(y, x) is zero

below the diagonal, Corollary 2.4.1 yields:

s1 ≤ re(GS) ≤ r(GS) ≤ s1,

which proves the second claim.

Lemma 2.4.6. Let T = GS + bF satisfy (1.3.6) and (M). Then

re(T ) = re(GS) = s1.
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Proof. Note that bF : L1 → L1 is a compact map since it has finite (1-dimensional)

rank. Corollary 4.1 and Corollary 4.11 in the book [19], combined with Theorem 2.4.1

above, imply that

re(T ) = re(GS + bF ) = re(GS) = s1.

The next step in showing that r(T ) ∈ σ(T ) is a pole of R(z, T ) is showing that

there is some z ∈ σ(T ) such that |z| > s1 = re(T ); the following lemmas and corollary

accomplish this.

Lemma 2.4.7. Suppose that z ∈ ρ(GS), the resolvent set of GS, and define ψ :=

(zI −GS)−1b. If

Fψ = F (zI −GS)−1b = 1, (2.4.2)

then ψ is an eigenvector for T with eigenvalue z.

Conversely, if v is an eigenvector for T with eigenvalue z ∈ ρ(GS), then v is in

the span of ψ, and Fψ = 1.

Proof. Suppose z ∈ ρ(GS), and define ψ as above. Then the condition Fψ = 1

implies that

ψ = (zI −GS)−1b(Fψ),

which can be re-arranged to yield

zψ = GSψ + bFψ = Tψ.

Hence, ψ is an eigenvector of T with eigenvalue z.
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Conversely, suppose that v is an eigenvector for T with eigenvalue z ∈ ρ(GS).

Then we can write

Tv = (GS + bF )v = zv,

which we can re-arrange to get

v = (zI −GS)−1b(Fv). (2.4.3)

This shows that v is in the span of (zI −GS)−1b, and also that Fv 6= 0 since v is an

eigenvector. Applying F to both sides of (2.4.3) and dividing by Fv, we get

F (zI −GS)−1b = 1,

as claimed.

Lemma 2.4.8. Let E := (s1,∞), and let P : E → R be given by

P (t) := F (tI −GS)−1b,

where g(y, x) satisfies (1.3.6) and (M). Then the following hold:

1. P is continuous;

2. P is strictly decreasing;

3. limt→∞ P (t) = 0.

If in addition s(x) satisfies (S), then

4. limt→s1 P (t) =∞.
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Proof. The first claim follows from the fact that the mapping t 7→ (tI − GS)−1 is

continuous for t in the resolvent set of GS, and the fact that F is continuous.

Next, we prove that P is strictly decreasing. Take t1, t2 ∈ (s1,∞), such that

t1 < t2. By Lemma 2.1.5, there is some n ≥ 1 such that (GS)nb > 0 on a subset of

positive measure in [x′, U ]. Recall that f(x) ≥ f0 > 0 for x ∈ [x′, U ], and this implies

that F (GS)kd > 0 for any k ≥ n.

Recall that whenever t > s1 = r(GS), we can write (tI − GS)−1 as a Neumann

series; thus, we can write F (t1I −GS)−1b as a series of nonnegative terms, and split

it into two pieces. The first piece will consist of terms which may be zero, those with

indices less than n; the second piece, with indices greater than or equal to n, will

consist exclusively of positive terms. To this end, we have

P (t1) = F (t1I −GS)−1d

= F

(
1

t1

∞∑
k=0

(
GS

t1

)k
d

)
=

1

t1

n−1∑
k=0

F (GS)kd

tk1
+

1

t1

∞∑
k=n

F (GS)kd

tk1

≥ 1

t2

n−1∑
k=0

F (GS)kd

tk2
+

1

t1

∞∑
k=n

F (GS)kd

tk1

>
1

t2

n−1∑
k=0

F (GS)kd

tk2
+

1

t2

∞∑
k=n

F (GS)kd

tk2
=

1

t2

∞∑
k=0

F (GS)kd

tk2

= F (t2I −GS)−1b = P (t2),

where the “≥” line above is a result of (GS)kb possibly being in the kernel of F when

k ≤ n − 1, and the strict inequality comes from the fact (GSk)d cannot be in the

kernel of F for k ≥ n. Therefore, P (t) is strictly decreasing on (s1,∞) since t1 < t2

implies that P (t1) > P (t2).



42

Next, we will show that

lim
t→∞

F (tI −GS)−1ϕ = 0

holds for any fixed ϕ ∈ L1, and hence in particular for ϕ = b. Note that the functional

F : L1 → R and the operator GS : L1 → L1 are bounded, so

||F (tI −GS)−1ϕ|| ≤ ||F (tI −GS)−1|| · ||ϕ||1 =

∣∣∣∣∣
∣∣∣∣∣
∞∑
k=0

F (GS)k

tk+1

∣∣∣∣∣
∣∣∣∣∣ · ||ϕ||1

≤ ||F || · ||ϕ||1 ·
∞∑
k=0

||GS||k

tk+1
= ||F || · ||ϕ||1 ·

∞∑
k=0

sk1
tk+1

=

(
||F || · ||ϕ||1

t

)
·
(

1

1− s1
t

)
,

and taking the limit t→∞ yields the result.

Finally, we will show that the limit

lim
t→s1

F (tI −GS)−1ϕ =∞

holds for any nonzero ϕ ∈ K, which will imply the claim (4). By (S) and an as-

sumption on f(x), there is some x̂ < U such that both s(x) = s1 and f(x) ≥ f0 > 0

almost-everywhere for x > x̂.

Using Lemmas 2.1.3 and 2.1.5, there is an N ∈ N such that the support of Gn
0ϕ

is a subset of positive measure of [x̂, U ], and ||Gn
0ϕ||1 > 0 for every n > N . Put

m := ||GN
0 ϕ||1 > 0, and ψ := GN

0 ϕ. Corollary 2.1.1 now implies that

||Gkψ||1 = ||ψ||1 = ||GN
0 ϕ||1 = m > 0 (2.4.4)

for all k ≥ 1.
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We now study the nonnegative number

F (t−GS)−1ϕ =
1

t
F

(
I − GS

t

)−1

ϕ.

By splitting the Neumann series for
(
I − GS

t

−1
)

into terms before N and terms after

N , we can write

1

t
F

(
I − GS

t

)−1

ϕ =
1

t

∫ U

L

f(x)

(
∞∑
k=0

(
GS

t

)k
ϕ

)
(x) dx

= M +
1

t

∫ U

L

f(x)

(
∞∑

k=N+1

(
GS

t

)k
ϕ

)
(x) dx, (2.4.5)

where

M :=
1

t

∫ U

L

f(x)

(
N∑
k=0

(
GS

t

)k
ϕ

)
(x) dx

is a nonnegative number (and possibly zero). We claim that the right-hand term of

(2.4.5) goes to ∞ as t→ s1.

Note that the assumption of g(y, x) being zero below the diagonal implies that

t−1g(y, x)s(x) is also zero below the diagonal; hence,
(
GS
t

)k
ϕ > 0 on a subset of

positive measure in [x̂, U ] for k ≥ N + 1 by a similar argument to the one given in

the proof of Lemma 2.1.2.

The uniform convergence of the Neumann series allows us to interchange the sum
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and integral signs in the following calculation:

1

t

∫ U

L

f(x)

(
∞∑

k=N+1

(
GS

t

)k
ϕ

)
(x) dx ≥ f0

t

∫ U

L

∞∑
k=N+1

(s1

t

)k
(Gkϕ)(x) dx

=
f0

t

∞∑
k=N+1

(s1

t

)k ∫ U

L

(Gkϕ)(x) dx

=
f0

t

∞∑
k=N+1

(s1

t

)k
||Gkϕ||︸ ︷︷ ︸

=m,∀k≥N+1

=
f0 ·m
t

(s1

t

)N+1
∞∑
k=0

(s1

t

)k
=
f0 ·m
t

(s1

t

)N+1
(

1

1− s1
t

)
(2.4.6)

Since f0, t, and m are positive numbers, taking the limit t → s1 shows that (2.4.6)

goes to ∞, which implies that (2.4.5) also goes to ∞. Therefore,

lim
λ→s1

F (λ−GS)−1ϕ =∞,

and in particular for ϕ = b.

Corollary 2.4.2. For T satisfying all assumptions of the previous lemma, there exists

a unique real-valued t0 > re(T ) such that P (t0) = 1.

Proof. Recall from Lemma 2.4.6 that s1 = re(T ) when g(y, x) is zero below the

diagonal. Then properties (1), (3), and (4) of Lemma 2.4.8 guarantee the existence

of such a t0, and property (2) guarantees its uniqueness.

Lemma 2.4.9. If g(y, x) satisfies (1.3.6), (M), and (S), then there is an eigenvalue

λ0 ∈ σ(T ) such that λ0 > s1 = re(T ).
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Proof. Corollary 2.4.1 and Corollary 2.4.2 guarantee the existence of a unique λ0 >

re(GS) = s1 such that

P (µ) = F (λ0I −GS)−1b = 1.

Lemma 2.4.7 then implies that λ0 is an eigenvalue of T with eigenvector ψ = (λ0I −

GS)−1b; hence, λ0 ∈ σ(T ) and λ0 > s1, as claimed.

Note that the purpose of conclusion (4) of Lemma 2.4.8 in proving Lemma 2.4.9

is to show that P (t̂) > 1 for some t̂. If one could verify that P (t̂) > 1 for some t̂ in

another way, then assumption (S) would be unnecessary.

The following corollary is a critical result:

Corollary 2.4.3. Suppose that g(y, x) satisfies (1.3.6), (M), and (S), and let λ =

r(T ). Then λ > re(T ), which in particular means that λ ∈ σ(T ) \ σe(T ).

Proof. From Lemma 2.4.9, we know that there is some µ ∈ σ(T ) such that µ >

re(GS). Then by the definition of the spectral radius, we have

r(T ) ≥ µ > re(T ),

as claimed. This fact, combined with Lemma 2.4.2, implies that λ ∈ σ(T )\σe(T ).

The main theorem of this section is now simple to prove:

Theorem 2.4.1. Suppose that g(y, x) satisfies (1.3.6), (M), and (S). Then the spec-

tral radius λ = r(T ) is a pole of R(z) = (zI − T )−1.

Proof. By Corollary 2.4.3, we know that λ ∈ σ(T ) \ σe(T ); the fact that λ is a pole

of R(z) follows immediately from Theorem A.3.3 in [13].
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2.5 Main Results

Now that we have shown the operator T : L1 → L1 is strictly nonsupporting, and

that its spectral radius λ = r(T ) is a pole of its resolvent R(z, T ), we can prove that

T has the properties (1) - (3) given in the introduction, which we have collected (with

even more results) in Theorem 2.5.1. In the proof, we will make use of results given

in [30] and [41].

Theorem 2.5.1. Suppose that T : L1 → L1 is an integral operator with kernel of

the form (1.3.1), whose component functions satisfy the assumptions (1.3.2) - (1.3.6),

(M), (R), and (S). Then T has the following properties:

1. The spectral radius λ = r(T ) is positive, and is an eigenvalue for T and T ∗.

Moreover, the respective eigenvectors ψ, ψ∗ span one-dimensional eigenspaces,

where ψ is quasi-interior, and ψ∗ represents a strictly positive linear functional.

Additionally, ψ, ψ∗ are the only eigenvectors of T , T ∗ which can be scaled so

that ψ ∈ K, ψ∗ ∈ K∗.

2. T has a spectral gap, meaning that

sup{|z| | z ∈ σ(T ), z 6= λ} < λ

3. Suppose ψ is scaled so that ||ψ||1 = 1, and ψ∗ is scaled so that 〈ψ, ψ∗〉 = 1.

Then for any nonzero ϕ0 ∈ K, we have

lim
n→∞

T nϕ0

λn
= 〈ϕ0, ψ

∗〉ψ,

where 〈ϕ0, ψ
∗〉 > 0.
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Proof. Note that under the above assumptions, T is a strictly nonsupporting operator

by Corollary 2.3.1, and hence in particular is nonsupporting. Also, λ = r(T ) is a pole

of the resolvent R(z, T ) by Theorem 2.4.1. Hence, Theorem 2.3(d) in [30] implies

that λ is the only element of the peripheral spectrum σp(T ). Since λ > re(T ) by

Corollary 2.4.3, the value λ is not in the essential spectrum. From our definition of

the essential spectrum, this means that any eigenspace corresponding to λ must be

finite-dimensional, so T satisfies the hypotheses of Theorem 5 in [41], the consequences

of which are exactly property (1) above.

Next, we will show that T has a spectral gap; suppose otherwise that

sup{|z| | z ∈ σ(T ), z 6= λ} = λ.

Then there is a sequence {zn} ⊆ σ(T ) such that zn 6= λ for all n, and |zn| → λ.

Without loss of generality, we can also assume that

|z1| < |z2| < · · · < λ.

Then the sequence {zn} is an infinite subset of the closed disc D ⊆ C of radius λ,

which is a compact set. Theorem 2.37 in [39] says that {zn} must have a limit point

in D, call it z0. Since λ is not a limit point of the spectrum, as λ > re(T ), it must be

that z0 6= λ. Hence, we must have |z0| < λ, and thus |zn| < |z0| < λ for all n. This

implies that |zn| 6→ λ, contradicting the choice of {zn}. Hence, it must be that

sup{|z| | z ∈ σ(T ), z 6= λ} < λ.

To see that (3) in the theorem statement holds, note that Theorem 2.3(e) in [30]
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says that the operator B1 : L1 → L1 defined by

B1 := lim
n→∞

T n

λn
, (2.5.1)

is a projection operator onto the eigenspace spanned by ψ, where the convergence is

in norm. Then there is some element h ∈ K∗ such that B1ϕ = 〈ϕ, h〉ψ for all ϕ ∈ L1;

we claim that h = ψ∗ almost-everywhere. To this end, note that

〈ϕ, ψ∗〉ψ =
〈 ϕ
λn
, λnψ∗

〉
ψ =

〈 ϕ
λn
, (T ∗)nψ∗

〉
ψ =

〈
T nϕ

λn
, ψ∗
〉
ψ.

Since (2.5.1) is convergence in the norm, taking n→∞ yields the relation

〈ϕ, ψ∗〉ψ = lim
n→∞

〈
T nϕ

λn
, ψ∗
〉
ψ = 〈B1ϕ, ψ

∗〉ψ.

Thus, for any ϕ ∈ L1 we have

〈ϕ, ψ∗〉 = 〈B1ϕ, ψ
∗〉 = 〈〈ϕ, h〉ψ, ψ∗〉 = 〈ϕ, h〉 · 〈ψ, ψ∗〉 = 〈ϕ, h〉, since 〈ψ, ψ∗〉 = 1.

Subtracting the left- and right-hand sides of the preceding equation gives 〈ϕ, ψ∗−h〉 =

0 for every ϕ ∈ L1, which implies that ψ∗ = h almost-everywhere, as claimed.

Then for any nonzero ϕ0 ∈ K, we have

lim
n→∞

T nϕ0

λn
= 〈ϕ0, ψ

∗〉ψ,

where 〈ϕ0, ψ
∗〉 > 0 since property (1) says that ψ∗ represents a strictly positive linear

functional; this completes the proof.
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Additionally, we can give an explicit formula for the leading eigenvector ψ:

Corollary 2.5.1. Suppose the operator T : L1 → L1 satisfies the assumptions of

Theorem 2.5.1. Then an eigenvector ψ corresponding to λ = r(T ) is given by the

formula

ψ = (λI −GS)−1b.

Proof. This is an immediate consequence of Lemma 2.4.7 and Theorem 2.5.1.

This corollary also shows that the t0 from Corollary 2.4.2 must in fact be λ =

r(T ).
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Chapter 3

Estimating the Spectral Radius λ = r(T )

In the previous section, we proved that the spectral radius λ = r(T ) is an eigenvalue

of the operator T , but said nothing about how to approximate it. Since the operator

T we consider in this paper is not compact, it cannot be approximated uniformly

by finite-rank operators (i.e., matrices). Hence, the standard methods given in [22]

to approximate λ will not work in this case, because the operator they considered

was compact. However, we will show that the zeros of functions defined by sums

of compact operators will converge to λ. This result shows that it is theoretically

possible to use compact operators, but in a different way than in [22], to approximate

the spectral radius λ of the non-compact operator T .

Before we state our results, put A := GS, for notational simplicity. Consider the

three functions

Q(t) := −1 +
∞∑
k=0

F (Akb)

tk+1
, (3.1.1)

Qn(t) := −1 +
n∑
k=0

F (Akb)

tk+1
, (3.1.2)

Qn,δ(t) := −1 +
n∑
k=0

F (Akδb)

tk+1
, (3.1.3)
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where Aδ := GδS, and Gδ is the integral operator with kernel

gδ(y, x) :=


g(y, x), if (y, x) ∈ [L,U ]× [L,U − δ],

0, otherwise

. (3.1.4)

Recall that Q(t) is well-defined for t ∈ (s1,∞), since s1 = r(A). However, both

Qn(t) and Qn,δ are defined for any t ∈ R (assuming δ < U − L).

Note that Q(t) = −1 + P (t), where P is the function defined in Lemma 2.4.8,

and hence Q(t) has the unique zero t = λ. Since the kernel gδ(y, x) is bounded,

Gk : L1 → L1 is a compact operator for all k ∈ N, and hence the expression (3.1.3) is

defined using only compact operators. We will show that Qn,δ has a unique zero zn,δ,

for sufficiently large n ∈ N and small δ > 0, and that the distance |zn,δ − λ| can be

made arbitrarily small. This is an important theoretical fact, because it shows that

compact operators can be used to estimate the spectral radius λ of the non-compact

operator T .

The main result of this section will be a consequence of the following general fact:

Lemma 3.1.1. Suppose E ⊂ R, and that f : E → R has a zero z ∈ E. Further,

suppose {fn : E → R} is a sequence of functions such that fn(zn) = 0 for some

zn ∈ E, and that

1. fn → f pointwise,

2. f and each fn are strictly decreasing,

3. the sequence {fn(t)} is strictly increasing for each t,

4. fn(t) < f(t) for each n and t;

then zn → z.
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Proof. Note that each zero zn is the unique value in Ω such that fn(zn) = 0, since

each fn is strictly decreasing. We claim that the sequence {zn} of zeros is a strictly

increasing sequence. To see this, suppose that zk+1 ≤ zk for some k. This implies

that

0 = fk+1(zk+1) ≥ fk+1(zk) > fk(zk) = 0,

where the “≥” inequality comes from assumption (2), and the strict inequality comes

from assumption (3). But this is impossible, so we conclude that {zn} is strictly

increasing.

We claim that zn ≤ z, for all n. To see this, suppose otherwise that zk > z for

some k. Then we have the contradiction

0 = fk(zk) ≤ fk(z) < f(z) = 0,

where the first inequality comes from assumption (2), and the second from assumption

(4).

Thus, {zn} is (strictly) increasing and bounded above, so it has a limit point z∗.

We claim that z∗ = z; to see this, suppose otherwise that z∗ < z. Then

f(z∗) > f(z) = 0,

by assumption (2), and thus f(t) > 0 for all t ∈ [z∗, z). Additionally, zn < z∗ for all

n, so

0 = fn(zn) > fn(t)

for all t > zn. Thus, fn(t) < 0 for all t ∈ [z∗, z), in particular. But then f cannot

be the pointwise limit of fn on the interval [z∗, z), contradicting assumption (1). We
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conclude that z∗ = z, and therefore

lim
n→∞

zn = z,

as claimed.

With this general result, we will prove two lemmas before the main theorem:

Lemma 3.1.2. Recall the definitions (3.1.1) and (3.1.2) for Qn(t) and Q(t), respec-

tively. There is an N ∈ N such that for n ≥ N , the function Q and sequence {Qn}

satisfy the hypotheses of Lemma 3.1.1, in place of f and {fn}, respectively.

Proof. Note that Qn and Q are both defined on Ω := (s1,∞). The fact that Qn → Q

pointwise follows immediately from the definitions (3.1.1) and (3.1.2). The function

Q is strictly decreasing on Ω by Lemma 2.4.8. What’s more, the same argument given

in the proof of Lemma 2.4.8 shows that Qn is strictly decreasing, so long as n ≥ N1,

where N1 ∈ N is such that F (Anb) > 0 for n ≥ N1; the existence of this N1 is given

in the proof of Lemma 2.4.8. Additionally, {Qn(t)} is a strictly increasing sequence

for any t > 0, so long as n ≥ N1, since F (Anb) > 0 for these n.

Finally, Lemma 2.4.8 also guarantees that Q has a unique zero, call it λ, in (s1,∞).

We claim that Qn has a unique zero in (s1,∞) for n large enough; to see this, note

first that

lim
t→∞

Qn(t) = −1

for any n. Since λ > s1, pick any t1 ∈ (s1, λ). Since Qn → Q pointwise on the

interval [t1, λ], and Q(t1) > 0, there is an N2 ∈ N such that Qn(t1) > 0 for all

n ≥ N2. The continuity of each Qn thus implies that Qn has a zero zn in (s1,∞)

for n ≥ N2, and this zero is unique because Qn(t) is strictly decreasing. Putting
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N := max{N1, N2}, the functions Q, Qn therefore satisfy all hypotheses of Lemma

3.1.1, so long as n ≥ N .

Next, we prove a similar result for Qn and Qn,δ; however, we will need one more

assumption on the offspring distribution b(y):

Lemma 3.1.3. Suppose that n ≥ N is fixed, where N is the number guaranteed in

the previous lemma. Also, suppose that b(y) > 0 almost everywhere. Then there is

a δ(n) > 0 such that for 0 < δ < δ(n), the functions Qn,δ satisfy the hypotheses of

Lemma 3.1.1, in place of fn (except with δ the indexing variable, and limits taken as

δ → 0).

Proof. First, we will show that Qn,δ → Qn pointwise. To this end, fix some t ∈

(s1,∞), and note that

|Qn(t)−Qn,δ(t)| = F

(
n∑
k=0

(Akb− Akδb)
tk+1

)
,

which goes to zero as δ → 0 so long as ||Akb − Akδb||1 → 0. Before we demonstrate

this limit, recall that the offspring distribution b = b(y) is defined on Ω = [L,U ]; we

have

||Akb− Akδb||1 =

∫ U

L

∣∣(Akb− Akδb)(y)
∣∣ dy

≤ sk1

∫ U

L

(Gkb−Gk
δ )(b)(y)dy

≤ sk1 · ||b||∞
∫ U

L

∫ U

U−δ
g(y, xk) · · ·

∫ U

U−δ
g(x2, x1)dx1 · · · dxkdy

= sk1 · ||b||∞
∫ U

L

g(y, xk)

∫ U

U−δ
g(xk, xk−1)

∫ U

U−δ
· · ·
∫ U

U−δ
dx1︸ ︷︷ ︸

=δ

dx2 · · · dy

≤ sk1||b||∞ · δ,
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where we applied Fubini-Tonelli to shift all integrals to the right from the third-to-last

to the second-to-last line. In that penultimate expression, the integrals with respect

to x2, . . . , y are each less than or equal to, 1 by assumption on g(y, x). Taking the

limit δ → 0 thus implies that ||Akb−Abδ||1 → 0, and hence that Qn,δ → Qn pointwise.

Next, recall that the N ∈ N from the previous lemma was chosen so that F (Anb) >

0 for n ≥ N . This means that Anb > 0 on a set of positive measure in [x′, U ], where

x′ is the size of maturity. Hence, there is some δ0 > 0 such that Anδ0b > 0 on a set of

positive measure in [x′, U ] as well. Then for any δ < δ0, we have

0 < F (Anδ0b) ≤ F (Anδ b),

which implies that Qn,δ(t) is strictly decreasing in t for these δ, by the same argument

given in the proof to Lemma 2.4.8.

Since b(y) > 0 a.e., we have the inequality

0 < F (Akδ1b) < F (Akδ2b)

whenever δ1 > δ2. Hence, Qn,δ(t) strictly increases to Qn(t) as δ → 0.

Finally, by assumption on n we know that Qn has a zero, call it zn, in (s1,∞). Fix

some t2 such that s1 < t2 < zn. Since Qn,δ → Qn pointwise on (s1,∞), there is a δ3

such that for δ < δ3, we have Qn,δ(t2) > 0. Note also that Qn,δ is continuous, which

comes immediately from the definition (3.1.3), and also that limt→∞Qn,δ(t) = −1.

Hence, there is a zn,δ ∈ (s1,∞) such that Qn,δ(zn,δ) = 0, and this is the unique such

value since Qn,δ(t) is strictly decreasing with respect to t.

Therefore, for δ < δ(n) := min{δ0, δ3}, each function Qn,δ satisfies the hypotheses

of Lemma 3.1.1, where δ is the indexing variable, and limits are taken as δ → 0.
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We now have the tools we need to prove the main result of this section:

Theorem 3.1.1. For every ε > 0, there is an N ∈ N and a δ(N) > 0 such that for

any n ≥ N and δ < δ(n), we have

|zn,δ − λ| < ε,

where zn,δ is the unique zero of Qn,δ.

Proof. Fix ε > 0. Lemma 3.1.2 implies that there is an N ∈ N such that for n ≥ N ,

the function Qn satisfies all hypotheses of Lemma 3.1.1; additionally, Lemma 3.1.3

gives a δ(n) > 0 for each n ≥ N such that Qn,δ satisfies all hypotheses of Lemma

3.1.1, with δ the indexing variable. Hence, Lemma 3.1.1 respectively gives an N ′ ≥ N

such that n′ ≥ N ′ implies

|zn′ − λ| <
ε

2
,

and a δ(N ′) > 0 such that for 0 < δ < δ(N ′), we have

|zn,δ − zn| <
ε

2
.

Therefore, for any such values of n and δ, the triangle inequality gives

|zn,δ − λ| ≤ |zn,δ − zn|+ |zn − λ| <
ε

2
+
ε

2
= ε,

which proves the claim.
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Chapter 4

Simulations of a Population Model Which Incorporates

Density-Dependent Somatic Growth

4.1 A Density-Dependent Finite-Dimensional Model

The size distribution of ecological populations sometimes becomes skewed towards

smaller members, which can happen when a species is invasive or when the biomass

is large. The papers [12, 47] suggest that in these situations, increased competition for

food could explain why individuals do not reach larger sizes over time. The authors of

these papers were interested in stunting, which happens when individuals are smaller

than expected for their age. Hence, the model in [12, 47] keeps track of the age of

individuals, and also their size. This combination of age- and size-structure is hard

to analyze mathematically, so [8] gave a simplified model which incorporates density-

dependent somatic growth as in [12, 47], but which does not keep track of age-cohorts.

The model in [8] is a nonlinear matrix model of the form

nt+1 = Awtnt, t ∈ N ∪ {0}, (4.1.1)
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where nt ∈ Rj+1 is a population vector. The matrix Awt is given by

Awt :=



0 f1 f2 f3 · · · fj−2 fj−1 fj

s0 s1(1− wt) 0 0 · · · 0 0 0

0 s1wt s2(1− wt) 0 · · · 0 0 0

...
...

...
...

. . .
...

...
...

0 0 0 0 · · · sj−2wt sj−1(1− wt) 0

0 0 0 0 · · · 0 sj−1wt sj


,

where the fi and si values are fecundity and survival rates, respectively, and 0 ≤

i ≤ j enumerate increasing size classes. Additionally, the authors of [8] assume that

fi > 0 for each i, and that si, fi are non-decreasing in i. This is a reasonable

assumption, because larger individuals are often more likely to survive than their

smaller conspecifics, and larger individuals often have more offspring (i.e., fish are

able to carry more eggs). The value wt is the probability of a stage i individual

growing to the stage i + 1 in one time step (without considering mortality). This

probability is a function of the total biomass of the population at time t:

wt = w(Bt),

where w : [0,∞) → (0, 1] is a differentiable and strictly decreasing function, with

w(0) = 1, limy→∞w(y) = 0. The biomass at time t is given by

Bt := α
n+1∑
i=0

L3
in

i
t, (4.1.2)

where nit is the ith entry of the population vector nt, and Li is the assumed length of

individuals in that class.
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The primary result of [8] is the following (which is Theorem 1 in original paper):

Theorem 4.1.1. Assume that Li, si, and w(·) satisfy the properties given above.

Then the system

nt+1 = Awtnt, wt = w(Bt) (4.1.3)

satisfies the following:

1. for 0 ≤ v ≤ w ≤ 1, r(Av) ≤ r(Aw);

2. if r(A1) < 1, then the zero-population n0 ≡ 0 is globally asymptotically stable;

3. if r(A0) > 1, then limt→∞ ||nt|| = ∞ for all nonzero nonnegative initial states

n0;

4. if r(A0) < 1 < r(A1), then the system (4.1.3) is bounded and has a unique

nonzero equilibrium n∗, and for every nonnegative initial population n0, the

biomass converges to the equilibrium biomass:

lim
t→∞

Bt = B∗,

where B∗ is the biomass of the population n∗.

We note that in the original paper, this theorem also has results about the per-

sistence of the population, but for clarity we omit these results, as they were not

important in motivating our work with the nonlinear IPM.

The statement of Theorem 4.1.1 shows that the Perron-Frobenius theory for ma-

trices is critical in understanding the system (4.1.3), since the results depend on

knowledge of the spectral radii of r(A0) and r(A1), where 0 and 1 are the extreme
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values of wt. The fact that r(A0) and r(A1) are eigenvalues of the matrices A0, A1,

respectively, is guaranteed by the classical Perron-Frobenius theorem for matrices.

Note that in the matrix Awt above, individuals cannot shrink in size between time

steps; a nonlinear IPM which incorporates density-dependent growth will thus have

an unbounded growth kernel for any fixed biomass value, and the associated linear

operator will be non-compact. We expect the main result of Section 2.5 to be useful in

proving results about a nonlinear IPM model analogous to (4.1.3), which we describe

in the next section.

4.2 A Density-Dependent IPM

We used the IPM operator T : L1 → L1 given in [45] as the basis for a nonlinear

operator Twt : L1 → L1 which incorporates density-dependent somatic growth (see

(4.2.3) below). In this section, we study the system

ϕt+1 := Twtϕt, wt := w(Bt), (4.2.1)

again where w : [0,∞) → (0, 1] is a differentiable, strictly decreasing function such

that w(0) = 1, and limy→∞w(y) = 0. In (4.2.1), the value Bt is the biomass of the

population vector ϕt, which we compute as

Bt := α

∫ U

L

xβϕt(x) dx, (4.2.2)

analogously to (4.1.2). In both definitions (4.1.2) and (4.2.2), the parameter α is the

mass-length coefficient of the modeled population. Finally, the nonlinear operator
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Twt : L1 → L1 is the integral operator with kernel

k(y, x, wt) := s(x)g(y, x, wt) + b(y)f(x), (4.2.3)

where the survival function s(x), offspring distribution b(y), fecundity f(x) are given

in [45]. We incorporated density-dependent growth into their model by replacing the

mean growth increment (m(x) − x) with wt(m(x) − x). Hence, when the popula-

tion biomass increases, wt will be decrease and so will the mean growth increment.

Specifically, we used the mean growth m(x), standard deviation of growth σ(x), and

lognormal parameter conversions µ(x) and v(x) also used in [45] to define

g(y, x, wt) :=


Γ(y,x,wt)∫ U

x Γ(y,x,wt) dy
, y > x,

0, y ≤ x
, (4.2.4)

where

Γ(y, x, wt) :=
1√

2π(y − x)vwt(x)
exp

(
−(ln(y − x)− µwt(x))2

2vwt(x)

)
, (4.2.5)

µwt(x) := log

(
((wt(m(x)− x))2√

((wt(m(x)− x))2 + σ(x)2

)
, (4.2.6)

vwt(x) := log

(
1 +

σ(x)2

(wt(m(x)− x))2

)
. (4.2.7)

We incorporated the same functional response w(y) used in [8], namely

w(y) :=
1

1 + cy
, (4.2.8)

where c is a parameter that depends on the population. However, since equations

(4.2.6) and (4.2.7) are both undefined when wt = 0, we have to bound wt away from
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zero in order to avoid division by zero on the computer. Even though w(y) > 0 for

all y, in some simulations the population biomass B gets so large that computers

evaluate w(B) = 0. Hence, we used the function

wt := max

{
1

1 + cBt

, 0.001

}

where Bt is defined in 4.2.2.

Note that in the matrix system (4.1.1), wt is the probability that an individual in

size class i will grow to size i+ 1. However, in the IPM system (4.2.1), wt must have

a different interpretation, since in this case the size stages are continuous. Using

The definitions (1.3.8) and (1.3.9) indicate the conceptual difference between the

role of wt in the matrix system (4.1.1) and the IPM system (4.2.1): in the former,

wt is the probability that an individual in size class i grows to size class i + 1 in a

single time step (ignoring mortality), and in the latter, wt represents a scale factor

that reduces the expected growth increment (m(x)− x) of an individual of size x as

the total biomass increases.

The expressions (4.2.5) - (4.2.7) look complex, so to clarify the effect of scaling

the quantity (m(x)− x) by wt, we include Figure 4.1:
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Figure 4.1: Plots of g(y, x, wt) for x = 1 and various values of wt

Since smaller values of wt correspond to higher biomass, this plot indicates that

a size x = 1 individual is likely to grow less when total population biomass is high.

The value x = 1 is not special; other values of x yield similar plots.

4.3 Simulation Results

In the following subsections, we give simulation results based on the system (4.2.1),

but with some caveats. We used MATLAB to generate a matrix at each time step

which sampled the kernel of Twt using a mesh of 300 equally spaced points on the x−

and y−axes; however, Corollary 2.2.1 says that Twt is not compact for any value of

wt ∈ (0, 1], and hence cannot be approximated by matrices. Because of this, we do

not claim that our simulations reflect the true dynamics of the infinite-dimensional

system. Instead, one could think of the nonlinear IPM as a tool to generate a finite-

dimensional system with as many size classes as mesh points as one chooses, and

which allows for more growth options than the matrix Awt in [8].
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With that said, we make one more assumption on the IPM model in three of

the following subsections, namely that individuals all have the same survival rate,

regardless of size. This is consistent with our assumption in Section 1.3, in which

we assumed s(x) was increasing, but not necessarily strictly increasing. For constant

survival, the simulations suggest that a result akin to Theorem 4.1.1 may hold for

the nonlinear IPM system. In subsections 4.3.1, 4.3.2, and 4.3.3, we assume that the

survival probability for all sizes is 0.68, which is the maximum survival rate given in

[45].

We decided to assume constant survival because the long-term behavior of the IPM

system (4.2.1) is unclear for the sigmoid-shaped survival function s(x) given in [45].

In this case, the survival of offspring is extremely low, and the resulting populations

grow very slowly. Hence, it is hard to tell from plots what the population is doing

in the long-run. With this more realistic survival function, the asymptotic behavior

of the system is not at all clear, even after thousands of time steps. Hence, for this

preliminary investigation, we will keep the survival rates for each size constant.

In the results that follow, we allowed the IPM system to evolve for 200 time steps,

starting from five different initial populations pi = vi/||v1||1, where

vi(x) =


1, x ∈

[
L+ 1

5
(U − L)(i− 1), L+ 1

5
(U − L)i

]
0, else

(4.3.1)

for i = 1, 2, 3, 4, 5, and where L, U are the lower- and upper-limits of x, respectively.

These vectors give a different initial concentrations in ranges that span the whole state

space [L,U ]. Note also that ||pi||1 = 1 for all i; we tested larger initial populations (up

to 10,000 individuals), but changing the population size did not change the asymptotic

behavior of the model.
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In subsections 4.3.1 - 4.3.3, we investigated whether results like parts (2)-(4) of

Theorem 4.1.1 held. In the first simulations, we scaled the fecundity function f(x)

given in [45] by 0.05, and in this case the population went extinct. Second, we

left f(x) unchanged, and this yielded a positive steady state population. Third, we

scaled f(x) by a factor of 1000, which yielded a population going to infinity. In

the respective simulations, the biomass went 0, a positive value B∗, and infinity.

Hence, the operators Twt appear to approach the linear operators T1, Tw∗ , or T0.001,

respectively, where

w∗ := max

{
1

1 + cB∗
, 0.001

}
.

Because of this, each of the normalized population vectors pt/||pt|| in Subsections

4.3.1 - 4.3.3 approached a steady state distribution given by the leading eigenvector

of the respective linear operators T1, w∗ , and T0.001. By only altering the fecundity

function of the various kernels, we were able to directly compare these steady state

distributions; this is because the different scaling factors on f(x) disappear during

normalization, a fact guaranteed by the formula

ψ = F (λI −GS)−1b

for the leading eigenvector of a the linear IPM operator (see Corollary 2.5.1). Since

this nonlinear IPM is a model of density-dependent somatic growth, directly com-

paring the steady state distributions allows us to verify that higher biomass leads to

populations dominated by smaller individuals.

Before we give simulation results, we stress again that we do not know whether

they accurately portray the dynamics of the infinite-dimensional system 4.2.1. This

is because for a fixed wt = w, we cannot uniformly approximate the linear opera-

tor Tw with matrices, since Tw is not compact (see Theorem 2.2.1. And if we cannot
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uniformly approximate a particular Tw, we also cannot make a claim about the asymp-

totic behavior of the full nonlinear system ϕt+1 = Twtϕt. Instead, we consider the

following results to be for a high-dimensional matrix model, obtained by sampling

the kernel (4.2.3) with 3002 mesh points.

We summarize the functions and parameters we used in the following table:

Table 4.1: Kernel functions and parameters

Description Source

b(y) offspring distribution [45]
f(x) fecundity [45]

g(y, x, 1) somatic growth, no biomass [45]
s(x) ≡ 0.68 survival probability [45]

α = 6.648× 10−6kg/cm3 conversion rate in (4.2.2) [31]
β = 3.0217 power in (4.2.2) [31]

c = 9.0× 10−3kg−1 factor in (4.2.8) [12], converted to kg−1

We note that the the papers [45] and [31] both studied populations of northern pike

(Esox lucius), but [12] modeled white perch (Morone americana). We were unable

to find a parameter c in the literature for northern pike, so we tested values of c on

the order of 10−2 to 10−4, and found that the qualitative results of the simulations

still held true.

4.3.1 Simulations for the Fecundity Function 0.05f(x)

In this subsection, we consider the IPM with fecundity function given by 0.05f(x).

Recall that wt = 1 corresponds is the limiting case corresponding to no biomass,

i.e., when the population size is zero. Notwithstanding the fact that there are no

individuals to do any growing, we expect this limiting case to be the “best case” for

growth, meaning we expect r(Tw) < r(T1) for any w < 1. Hence, we also expect the

population to die out if r(T1) < 1. In the case of the matrix model in [8], this is the
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second conclusion of Theorem 4.1.1.

Using the eig() function in MATLAB, we estimated that r(T1) ≈ 0.984 < 1, and

Figure 4.2 suggests that r(Twt)→ r(T1) for the initial populations ϕ0 = pi:

Figure 4.2: Spectral radius of Twt when fecundity is 0.05f(x)

Since the spectral radii r(Twt) appear to converge to the value r(T1), where the

latter is the growth rate when the biomass is zero, one may wonder if the total

population and biomass in fact go to zero. This does appear to be the case:

Figure 4.3: Total population Figure 4.4: Total biomass



68

Even though the population vectors ϕt approach 0, the normalized vectors ϕt/||ϕt||

converge to a stable stage distribution, which is the leading eigenvector of T1. Note

that T1 is the same as the linear operator with kernel 1.3.1, which incorporates no

density-dependence in somatic growth. Hence, this is the distribution we compare

later distributions with in order to determine whether a population is dominated by

small individuals:

Figure 4.5: Stable stage distribution, also the leading eigenvector of T1

Note that the sharp decrease near the upper size limit U is a result of the diffi-

culty in approximating the kernel near (U,U), since the kernel is unbounded in any

neighborhood of that point.

4.3.2 Simulations for the Fecundity Function f(x)

For the kernel with fecundity function f(x), we found that r(T0.001) < 1 < r(T1),

a situation similar to conclusion (4) of Theorem 4.1.1. That result states that the

matrix system (4.1.3) approaches a nonzero equilibrium population. In other words,

r(Awt)→ 1, which also appears to happen in the case of the IPM system:
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Figure 4.6: Spectral radius of Twt when fecundity is f(x)

Additionally, the total population and biomass approach positive values:

Figure 4.7: Total population Figure 4.8: Total biomass

In this case, the population vector converges to an equilibrium distribution, which

is also the leading eigenvector of Tw(B∗), where B∗ is the equilibrium biomass indicated

in Figure 4.8:
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Figure 4.9: Stable stage distribution, also the leading eigenvector of Tw(B∗)

Note the contrast between Figures 4.5 and 4.9; when the total biomass approaches

a positive value, the stable stage distribution shows inhibited growth. The distribu-

tion in Figure 4.9 is more concentrated in small sizes, and individuals do not grow

much past the spike of the offspring distribution.

4.3.3 Simluations for the Fecundity Function 1000f(x)

Conclusion (3) of Theorem 4.1.1 gives a sufficient condition for the population to

grow without bound, namely when r(A0) > 1. In order to avoid division by zero

in our model, the lowest value wt can attain is 0.001, so we investigated whether

the population in the IPM model goes to infinity when r(T0.001) > 1. This occurs

for a fecundity function given by 1000f(x), but even with this dramatic increase,

our estimate for r(T0.001) was only barely greater than 1. In this case, we expected

r(Twt) → r(T0.001) > 1, which does appear to be the case. In the following plot, we

included a dotted line to show that the spectral radii stay bounded away from (and

above) 1:
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Figure 4.10: Spectral radius of Twt when fecundity is 1000f(x)

As expected, the total population and biomass increase without bound:

Figure 4.11: Total population Figure 4.12: Total biomass

Since the biomass increases without bound, the values wt eventually attain the

lower bound 0.001, and the population increases at a rate given by r(T0.001). Hence,

the population growth is eventually modeled by a linear function, and the stable stage

distribution is the leading eigenvector of T0.001:
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Figure 4.13: Stable stage distribution

Note that Figure 4.13 indicates a more extreme case of inhibited growth than in

Figure 4.9, since the biomass continues to increase (though wt attains its lower bound

of 0.001).
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